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U S E  O F  T H E  M E T H O D  

N U M E R I C A L  S O L U T I O N  

S T E F A N  P R O B L E M S  

O F  G R E E N  F U N C T I O N S  F O R  

O F  M U L T I D I M E N S I O N A L  

Yu. V. Zhernovyi and M. T. Saichuk UDC 536.25:517.95 

It is shown that use of an auxiliary Green function, namely, the Green function of the boundary-value problem 

for the Laplace operator with a condition of the third kind artificially introduced on part of  the boundary, 

makes it possible to f ind numerical solutions of  multidimensional Stefan problems with any boundary 

conditions. The efficiency of the method is verified for a Stefan problem that has an exact solution. 

In [1 ] a numerical-analytical method is suggested that makes it possible to find approximate solutions of 

one-dimensional nonstationary Stefan problems with allowance for the dependence of the coefficients of the heat 

conduction equation on the temperature. The essence of this approach consists in successive use of Kirchhoff's 

transform of the sought temperature, the method of straight lines, and the method of Green functions. A numerical 

solution of the obtained system of Hammerstein-type integral equations is sought by the projection-grid (zonal) 

method with retention of the stable computational grid in each time step. As compared to difference schemes with 

explicit separation of the front [2-4 ] the method of [ 1 ] is distinguished by logical simplicity, and in economy it 

compares favorably with the difference algorithm of through calculation [5, 6 ]. In what follows, we consider the 
special features of application of the approach of [I ] to the solution of multidimensional nonstationary Stefan 

problems. 

The differences in the formulation and the algorithm of the solution of the Stefan problem in the one- and 

multidimensional cases are already fully revealed in a comparison of the one- and two-dimensional cases. 

Therefore, we restrict our considerations to the Stefan problem with two spatial variables. For simplicity, we restrict 

ourselves to the case of the two-phase Stefan problem, although the method is suitable for any number of phases. 

We consider only boundary conditions that require construction of an auxiliary Green function [ 1 ], thus covering 

the cases of both nonlinear and linear boundary conditions of the second and third kind. Stefan problems with 

boundary conditions of the first kind (when the law of temperature variation is assigned on a portion of the 

boundary) are solved by means of an ordinary Green function. 
Assuming that straight lines parallel to the Ox axis intersect the phase interface at just one point, i.e., its 

equation ~(x,  y, t) = 0 can be represented in the form x = z(y, t), we write a general formulation of the nonstationary 

Stefan problem with two spatial variables for the cases of a rectangular region (k = 0) and axial symmetry of the 

temperature field T(x,  y, t) (k = 1, the region is a finite cylinder): 

x -~x x k 2 ( T ) ~ x  +-~y (T) = y ( T ) - ~ - w ( x , y , t , T ) +  

+ pxk[  z t (y, t) I tJ(k) ( x  -- z (y, t ) ) ,  0 < X < a ,  0 < y < b ,  t > 0 ; k = 0 ; 1 ; (1) 

T ( x , y ,  0) = T 0 ( x , y ) ;  r ( z ( y ,  t) ,  y , t )  = T . ;  z(y, 0) = z 0(y) ,  0 < z 0(y) < a ;  

2 (T) Tx = -- ek qO (Y, t, T ) ,  x = O ;  2 (T) Tx = ql (Y, t, T ) ,  x = a ; 
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)t (T) Ty = - Po (X, t, T ) ,  y = O ;  )t (T)  Ty = Pl (X, t, T) , y = b .  

Here  e o = I ;  e x -- 0; p = const, p > 0 in the case of melting and  p < 0 in crystall ization, 7". = const is the t empera tu re  

of the phase  transit ion. The  assigned functions ~l(73, ),(73, and  w(x,  y, t, T) can have a jumpwise discontinuity in 

T in passing through the phase interface, liable to determinat ion along with the t empera tu re  field. 

Assuming T ( x ,  y, t) >__ T O = const and having used the Kirchhoff t ransform 

T(x~'t)3t 
u (x, y, t) = u ( r )  = (T) d T  

TO 

we obtain the Stefan problem in a form convenient for subsequent  solution to de te rmine  the function z(y,  t) and  

the modified t empera tu re  u(x ,  y, t): 

A k u = F ( u )  u t -  W ( x , y , t , u )  + p  I z t ( y , t )  l x k 6 ( k ) ( X - z ( Y , t ) ) ,  O < x <  a ,  

0 < y < b ,  t > 0 ;  

u ( x , y ,  0) = u 0 ( x , y ) ;  u ( z ( y , t ) ,  y , t )  = u . ;  z (y ,  0) = z 0 ( y ) ;  (2) 

ux=- kOo(y,t,u), x = O ;  u x = Q l ( y , t , u ) ,  x = a ;  

u y = - P o ( x , t , u ) ,  y = 0 ;  u y = P l ( y , t , u ) ,  y = b .  

Here  F(u)  = ) ' ( T ( u ) ) d T ( u ) / d u ;  W ( x ,  y, t, u) = w(x,  y, t, T(u)) ;  Qi(y, t, u) = qi(Y, t, T(u) ) ;  Pi(x ,  t, u) = pi (x ,  t, 

T(u)) ;  i -- 0, I ;  u .  = u (T . ) ,  T(u)  is the inverse function to u(73. 

To solve problem (2) approximate ly  we use the method of s traight  lines [7, 8 ]. Having int roduced the 

notation t m =  m r ,  urn(x, y) = u(x ,  y, tin), zm(Y) = z(y,  tin), Win(x ,  y, urn) = W ( x ,  y, tin, urn), Qim(Y, urn) = Qi(Y, tin, 

urn), Pim(X, Urn) - -P i (x ,  tin urn), i = 0, 1, we obtain a nonl inear  boundary-va lue  problem for de termining the function 

urn(x, y) on the current  l ime layer  t = tm: 

AkU m = F (Um) (um - Um_l) / (o ' r )  - W m (x, y, urn) + p x  k [z m (y) - Zm_ l (Y)I 6(~) (x - 

-- z m ( y ) ) / ( o z )  -- (1 -- a) (AkUm_ 1 + Win_ 1 (x, y, U m _ l ) ) / a  , 0 < x < a ; 0 < y < b ; (a )  

= - e k O 0 r  n (y, u rn ) ,  x = 0 ;  = Qlrn  (Y, u . O ,  

Umy = -- Pom (X, Urn) , y = 0 ;  Umy = P l m  (X, UnO , y =  b;  

and an addi t ional  condit ion for determining zrn(y): 

Um (Zm (y) , y) = u.  ; m =  1 ,2  . . . . .  

x=a;  

m = 1 , 2 , . . . ,  

(4) 

We show that  the boundary-value  problem (3), (4) approximates  the Stefan problem (2) at the t ime t - -  trn 

with an e r ror  O(r )  at  a -- 1 and  an error  O( r  2) at a - -  1/2. For x ~ zm(y) the validity of this asser t ion is obvious 

[8 ]. Having in t roduced the notation ~ m ( X ,  y) = x - Zrn(Y) we consider  a point P on the surface  ~rn = 0 and  construct  

a cyl inder  of r a the r  small  volume with center  at the point P and  genera t r ix  parallel to the normal  n(P)  to ~ m  = 0 

at the point P. This  cyl inder  is symmetr ic  relative to the surface ~rn = 0. Let S1 be the side surface and  S 2 and  

S T be, respectively,  the lower and upper  base of the cylinder;  their  areas  are  denoted,  respectively, by  I S11 and  

IS21 = IS21 = I S ~ I .  We multiply the differential equation of problem (3) by x k, in tegra te  it over  the cyl inder  
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volume, and let I SII and then IS2 1 tend to zero. After transformations of the volume integrals similar to ones 

performed in [5, pp. 8 1 8-8 1 9 ], we obtain in the limit the relation 

((grad urn)p+ o - (grad urn)p_ o , grad ~m) = P ]~Drn (x, y) - ~ m - l  (x, y) I / (o ' r )  - 

- (1 - or) {((grad Um_l)p+ 0 - (grad urn_l)p_ 0 , grad CDm)}/a, 

which is an approximation for t = t m of the well-known Stefan condition 

((grad u)p+0 - (grad u)p_ 0 , grad ¢D) = p Iq, t l , 

with an error  O(r)  at a = 1 and an er ror  O(r  2) at a = 1/2. Here  the subscripts P + 0 and P - 0 denote  the limiting 

value of the quantities in approaching the point P lying on the phase front from the regions with lower and  higher  

heat contents [6 ]. 

Since the Green  function of the linear boundary-value problem corresponding to (3) (the second bound-  

ary-value problem for the Laplace operator) does not exist [9 ], then,  having represented one  of the boundary  

conditions of problem (3), e.g., at x = a, in the form 

Umx + hum = Qlrn (Y, Urn) + h u m ,  x = a ,  

(h is an arbi t rary  positive number) ,  we consider an auxiliary Green  function Gi(x, y; ~, r 1) as the solution of the 

following boundary-value  problem: 

AkG k (x, y; ~, r/) = --CS(k ) ( x - ~ ) ( 3 ( y - r / ) ,  0 < x <  a ,  0 < y <  b ;  
(s) 

G k x = O ,  x = 0 ;  G k y = 0 ,  y = 0 ;  G k x + h G k = O ,  x = a ;  G k y = 0 ,  y = b .  

We find from (5) 

oo 

Gk (x, r; ~, 7) = X {G. (y, 7) ~'~n (~) Pc. (x)/Ok~} , e = 0; 1 ; 
n=l 

where for k --- 0 (the plane problem) 

~o0, , ( x )  = c o s  ( y , , x ) ,  

and for k = 1 

*on = (Y~ a + h c o s  2 (~,na)) (1 - exp ( -  2y,,b))/y,,, 

Yn > 0 ,  cotan (yn a) = Yn/h ,  n = 1, 2 . . . . .  

(the axisymmetric  problem) 

2 
~Oln (x) = dO (Ynx) , ~ l n  = a2 0,2 + h 2) (1 - exp ( -  2~'nb)) Jo O'na)/~'n, 

7n > 0 ,  hJ o @n a) = ynyl @na) , n =  1 , 2 , . . . .  

(6 )  

b 
× ~kd~ + f {a k G ( x , y ;  a, rl) [hu m(a,rl) + Qlm(rl, Urn(a, 71) )1 + e kG(x , y ;O , r / )  × 

0 

900 

a 

~rn (x, y) = f 
o 

[G (x, y; ~, b) P1 m (~, Um (~, b)) + G (x, y; ~, O) Pore (~, Um (~, 0)) l x 

In what follows, to simplify the presentat ion we write A, G, 9'n, (Dn instead of Ak, G/o ~Okn, Fkn. 
Having used the second Green  formula for the operator  A applied to the functions Urn and G, we obtain an 

integral representat ion for the solution urn(x, y) of the boundaty-value problem (3): 



a b 
× Qom (rl, U,n (0, r/))} dr 1 - f f G (x, y; ~, 7"1) F m (~, r 1, u m (~, rl) ) ~kd~drl - 

0 0 

Ylm k 
-- p f G (x, y; z m (r]), r]) ]z m (r]) -- Zm_ 1 (r])[ z m (rl) drl/(o'r) , 

YOm 
O ~ x ~ a ,  O ~ x ~ b ,  (7) 

where Fm (x, y, u) = F (u) (UoT-- Um-I -- Wm (x, y, u) -- ( l  -- (7) (Aurn-I + crWm-1 (x, y, urn- l ) )  ; 

YOre, Ylm are the ordinates  of the points of intersection of the curve x = zm(y) for x E [0, a ]  with Oy axis; 

Ylm > YOre; we suppose that there  can be no more than two such points. Here  the following cases are possible: Y0m 

= O, Ylrn = b ( there are no intersection points at all), Yo,, -- 0, Ylm E (0, b] and Yore ~ [0, b), Ylm = b (only one 

intersection point exists). The  nonlinear  integral equation (7) should be solved simultaneously with condition (4). 

The  solution of Eq. (7) is sought in the form of a series in the eigenfunctions iOn(X) of expansion (6) of 

the Green  function G(x,  y; ~, 7/): 

.~ (x, y) = ~. ~.,. (y) iO. (~). (8) 
n=l 

To solve the problem approximately,  in series (6) and (8) we restrict ourselves to the sums of the first N terms (N 

is ra ther  large),  and then after  substitution of these partial sums in Eq. (7) we obtain a system of N nonl inear  

integral equations: 

gmn (Y) = [G n (y, b) Plm (~, Vim (~)) + Gn (Y, O) Pont (~, YOre (~)) ] iOn (~) ~kd~ + 
0 

+ $ { ~ .  (,0 { h ~ .  (,1) + Q~m ('1, w~. (~))1 + ~kiO. (0) Qom (~, Wo. (,7)) c .  (y, ,7) d,~ - 
o 

a b N 
- f f Gn (Y, rl) iOn (~) Frn (~' rl, ~,  gsm (rl) iOs (~)) ~kd~ dr] - 

0 0 s=l 

Ylm k 
-- p f Gn (Y, tl) iOn (Zm (rl)) [Zm (rl) - Zm_ 1 (r/)l Zm (rl) drl/(ow) 

YOre 
(Pn; O < _ y < b ;  n = l ,  N ,  (9) 

where 

N N 
Vo,. (x) = ~. gsm (0) io~ (x) , *'t,,, (x) = ~.  g , , .  (b) io~ (x) , 

s=l s=l 

N N 

W0m (Y) = Y- g,m (Y) ios (0),  wX.~ (Y) = E g, , .  (Y) ios (a) .  
$=1 s=l 

Equations (9) are a system of integral equations of the Hammerste in  type in gnm(Y), n = 1, N, which, 

moreover,  involves the unknown constants gnm(O) (for k = 0), gnm(b), n = 1, N,  YOre, Yl rn and the unknown function 

zm(y). First of all this system should be complemented by (ek + I ) N  equations,  having set y = 0 a nd  y = b 

successively in (9). Then  we obtain a system of (e k + 2)N equations in gnm(Y), gnm(O), and gnra(b), n = 1, N.  As  

concerns the unknowns YOre, Ylm, and zm(y), in a first approximation they can be taken equal to the known values 

obtained in the preceding t ime layer ,  and then,  as necessary,  we can refine the solution by an iteration technique. 
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It is convenient to seek a numerical solution of the obtained system of (e k + 2)N nonl inear  integral 

equat ions  by a pro jec t ion-gr id  zonal  method  [10], which makes  it possible to reduce  it to a sys t em of 

(t k + 1 + M)N nonlinear algebraic equations in gnm(O) (for k = 0), gnm(b), and the values of the functions gnm(Y) 

Yi 
gnmi (k + I) f grim (Y) /dy/(Yki +| k+l. = - - Y i - ] ) "  i =  I , M ,  n =  1, N ,  

Yi-  1 

averaged over the intervals (Yi-l, Yi) of subdivision of the segment [0, b ]. Having solved this system by one of the 

effective iteration techniques, e.g., the Newton method, using the solution of the system in the preceding time layer 

as the initial approximation, and having approximately calculated in (9) the integrals of the form 

b M Yi 
f f (~1, gnm (r])) dr] -~ E f .f (rl, gnmi) dr], 
0 i=1 yi_ 1 

we can use relations (9) 1o determine the functions gnm(Y). Then we find the coordinates of the points of the phase 

interface by means of condition (4), viz., we determine YOre, Ytm as the solution of the equation 

N 

n=l 

for y • [0, b]. Then ,  dividing the segment [Y0m, Ylm] into K parts ,  we seek xnu = zm(Ymi), where Ynu = 

YOre + i(Ylm - YOm)/K, i = O, K, from the equations 

N 

E 
tz=l 

gnm (Ymi) ~°n (x) = u. , i = O,K - 1. 

each of which, according to the assumption made above, has a single root for x E [0, a ]. The  function zm(y) can 

then be interpolated using the values Xmi = zm(Ymi) found. 
In the case where the functions qo, ql, P0, P] in the boundary conditions of problem (1) are independent  

of T (linear boundary conditions), and the dependences of the functions ~I(T), y(T),  and w(x, y, t, 7") on T have 

the piecewise-constant form 

; : =  const , 
fl (7) = const , 

T <  T.  , I ws (x, y , t )  , T <  T.  , (10) 
T > _ T . ,  f l = , ~ ; y ;  w ( x , y , t , T ) =  [ W L ( X ' y ' t ) '  T > _ T . ,  

the system of integral equations (9) becomes linear in gnm(Y) and does not involve gain(O) or gnm(b). 
The suggested technique of numerical  solution of two-dimensional  nons ta t ionary  Stefan problems is 

checked by comparing results of calculations with the exact solution 

T ( x , y ,  t) = B L -  A L ( x  2 + y 2 ) / ( t  O -  t ) ,  0 -< x -< z (y ,  t) ; 0 -< y-< y ( t )  ; 

X 2 y2 I Z (y, t) --< X ---% a ,  0 --< y --< y ( t ) ,  
T(x ,y , t )  = B  s - A  s( + )/( t  0 -  t), [ 0  < x <  a, y(t) <<_y<_ b; 

z (y, t) (a 2 (t o t) -- y2)1/2 = -- , y ( t )  = a ( t  0 -  01/2  , O < t < t o ;  

A s =  (4~ L(B L -  T.) + p a 2 ) / ( 4 ; t s a  2); A L =  (B L -  T . ) a  -2", B s =  T . + a 2 A s  

902 



TABLE 1. Compar ison  of Results of Calculation of Values of y(t) with the Exact  Solution 

y(t) 

t N = 60, N = 60, N = 80, N = 80, 
exact solution 

M = 4 ,  r = 1 M = 6 ,  ~= 1 M = 4 ,  r = 1.5 M =  4, r = 1 

3 

6 

9 

12 

15 

0.9399 

0.8791 

0.8105 

0.7277 

0.6214 

0.9397 

0.8791 

0.8101 

0.7272 

0.6217 

0.9343 

0.8648 

0.7850 

0.6882 

0.5606 

0.9377 

0.8730 

0.8001 

0.7135 

0.6247 

0.9381 

0.8717 

0.8000 

0.7211 

0.6325 

TABLE 2. Compar i son  of Results  of Calculation of Values of the Function z(y, t) Obta ined  at r = l ,  6 = 0.5, N - -  80, 

t = 10 with the Exact  Solution 

0.0000 

0.0773 

0.1546 

0.2319 

0.3092 

0.3865 

0.4638 

0.5411 

0.6184 

0.6957 

0.7730 

0.7746 

z(y, t) 

calculated value 

0.7796 

0.7758 

0.7643 

0.7443 

0.7154 

0.6761 

0.6253 

0.5596 

0.4710 

0.3457 

0.0000 

exact  value 

0.7746 

0.7707 

0.7590 

0.7391 

0.7102 

0.6713 

0.6204 

0.5542 

0.4664 

0.3405 

0.0497 

0.0000 

of the problem with a phase  interface of circular shape [5] that  we write in the form of (1) with k = 0, qo(Y, t, 73 

= p o ( x ,  t, 7") = O, q l ( Y ,  t, 73 = - 2 A s 2 s a / ( t o - t ) ,  p l (x ,  t, 73 = - 2 A s 2 s b / ( t o -  t) ,  w(x,  y ,  t, 73  = 

A(T) (4~(T) (to -- t) - -y(T)  (x 2 + y2)) (to _ t ) -2 ,  where 2(T) ,  7(73, and  A(73 have the form of (10). 

T h e  calculations were per formed for: to = 25; T .  = 0; B E = 1; a = 0 . 2 ;  p = - I ;  ~-s = 0 . 5 ;  ~L  = 0 . 7 5 ;  Ys = 2 ;  

YL = 1.25; a -- b = 2; a = 1; h = l;  a t ime step r = 1 and  r = 1.5; a step in the spatial var iable  6 = 0.5 (M = 4) a n d  

6 = 0.33 (M = 6). In solving the  sys tem for gnmi, i = 1, M, n = 1, N, we used the values of Zra(Y) f rom the preceding  

t ime layer.  T h e  accuracy of the results of calculation depends  on the value of the auxi l ia ry  p a r a m e t e r  h, since h 

affects the ra te  of  series convergence of the series and to obtain the same  accuracy for different  h we mus t  t ake  

different  values of N. The  results of calculations presented in Tables  1-3 show that  this method  makes  it possible  

to obta in  a r a t he r  accurate  solution. As in the case of one spatial  var iable  [1 ], a reduct ion in the t ime step gives 

be t te r  results than  the same reduction in the spat ial-variable step. 

Thus ,  the  sugges ted  numer ica l - ana ly t i ca l  me thod  for  solving mul t id imens iona l  nons t a t i ona ry  S te fan  

problems is dis t inguished by logical simplicity, does not reqire reconstruction of the computat ional  grid in each 
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TABLE 3. Comparison of Results of Calculation of Values of T(x,  y, t) Obtained at r = 1, t5 = 0.5, N = 80, t = 5, 10, 

15 with the Exact Solution (upper row - calculated value; lower row - exact value) 

y 
X 

0 I 2 

t - -5  

1.0098 - 0 . 3 7 4 7  
0 

1.0000 - 0 . 3 8 0 0  

-0 .3566  - 2 . 2 5 5 7  
1 

- 0 . 3800  - 2 . 2 8 0 0  

-5 .9139  - 7 . 7 8 2 4  
2 

-6 .0800  - 7 . 9 8 0 0  

t = l O  

1.0110 - 1 . 0 1 4 6  

1.0000 - 1 . 0 1 3 3  

-0 .9893  -3 .5 2 9 8  

-1 .0133  - 3 . 5 4 6 7  

-8 .4317  -1 0 .9 3 1 5  

-8 .6133  -11 .1467  

0.9429 

1.0000 

-2 .3823  

- 2 . 2 8 0 0  

-13 .6256  

-13 .6800  

t=15  

- 2 . 4 1 7 8  

- 2 . 2 8 0 0  

-6 .2 2 7 6  

- 6 . 0 8 0 0  

-17 .4109  

-1 7 .4 8 0 0  

- 6 . 0 9 7 8  

- 6 . 0 8 0 0  

-7 .9641  

- 7 . 9 8 0 0  

- 1 3 . 1 6 6 3  

- 1 3 . 6 8 0 0  

- 8 . 6 6 2 5  

- 8 . 6 1 3 3  

- 1 1 . 1 5 8 4  

- 1 1 . 1 4 6 7  

-18 .1271  

- 1 8 . 7 4 6 7  

- 1 3 . 9 5 3 5  

- 1 3 . 6 8 0 0  

- 1 7 . 7 3 4 3  

- 1 7 . 4 8 0 0  

-28 .2671  

- 2 8 . 8 8 0 0  

time step, and is suited for any  boundary  conditions and for regions admitt ing construction of the Green  function 

of the first or third boundary-value  problem for the Laplace operator.  

N O T A T I O N  

T, temperature ;  x, y, spatial coordinates; t, time; T.,  t empera ture  of the phase transit ion; T °, initial 

temperature  distribution; 2, coefficient of thermal conductivity; ~, = cp; c, specific heat  capacity; p ,  densi ty;  w, 

distribution of internal  heat sources; x ~ z(y, t), equation for the phase interface; y(t), ordinate  of the point of 

intersection of the curve x -- z(y, t) with the Oy axis; p =/ -pL(T.)  ; L, latent heat of the phase transit ion; PL, densi ty  

of the liquid phase; qo, ql, Po, Pl ,  heat  fluxes at the boundaries x = 0, x = a, y = 0, y = b, respectively; O(x), Dirac 

delta function; ~(k)(x), Dirac delta function with weight xk; Aku = x-t(xlCUx)x + uyy, Laplace opera tor  for  the cases 

of plane (k = 0) and  cylindrical (k = 1) symmetry;  Ux = du/Ox; uyy = O2u/Oy2; Jo(x), J1 (x), Bessel functions of the 

first kind and zero and first orders,  respectively. 
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